Preliminary communication

μ_3 -SILYLIDIN- UND μ_3 -GERMYLIDIN-HETEROMETALL-CLUSTER

HEINRICH VAHRENKAMP*, DORIS STEIERT und PETRA GUSBETH

Institut für Anorganische Chemie der Universität Freiburg, Albertstr. 21, D-7800 Freiburg (Deutschland)

(Eingegangen den 22. Dezember 1980)

Summary

Two independent methods were used to prepare μ_3 -RSi and μ_3 -RGe bridged Co₂Mo and Co₂W clusters. The construction method yielded the RSiCo₂M (M = Mo, W) clusters from Cp(CO)₃M—SiH₂Me and cobalt carbonyl. The metal exchange method yielded two RGeCo₂Mo clusters from RGeCo₃(CO)₉ and [Cp(CO)₃Mo]₂.

Heterometall-Cluster sind aktuell wegen ihrer Multimetall-Reaktivität und der damit möglicherweise verbundenen speziellen katalytischen Aktivität. Die dadurch stimulierte Forschung auf diesem Gebiet hat in jüngster Zeit zahlreiche neue Verbindungen hervorgebracht, deren Synthese jedoch nicht immer rational oder verallgemeinerungsfähig ist [1]. Wir haben Methoden zur gezielten Darstellung von Heterometall-Clustern entwickelt [2-5], über deren Anwendung zur Gewinnung der Titelkomplexe in dieser Arbeit berichtet wird. Anlass dazu war der Versuch, die Erfahrungen mit den Heterometall-Abkömmlingen der μ_3 -Methylidin-Cluster I auf die Derivate der homologen μ_3 -Silylidin-Cluster II [6, 7] zu übertragen.

Die an I erprobten Metallaustausch-Reaktionen [2, 3] waren jedoch nicht auf die Cluster II anzuwenden, da diese zu empfindlich gegen nucleophilen An-

0022-328X/81/0000-0000/\$ 02.50, © 1981, Elsevier Sequoia S.A.

griff sind. Erfolgreich waren dagegen Aufbaureaktionen aus zwei reaktiven Cluster-Bausteinen, von denen einer die Heterometall---Komponente zusammen mit dem zur Verbrückung vorgesehenen Hauptgruppenelement-Hydrid-Liganden, der andere die Cobaltcarbonyl-Komponente enthält [4, 5, 8]. In diesem Sinne für Heterometall-Derivate von II geeignete Vorläufer waren die Silylmetallkomplexe III einerseits und Dicobaltoctacarbonyl andererseits. Ihre Umsetzung gemäss Gl. 1 ergab über die Zwischenstufen IV die sehr oxidationsempfindlichen Cluster V mit dem neuartigen tetraedrischen SiCo₂Mo- bzw. SiCo₂W-Gerüst.

 $(CO)_{3}$

Auch entsprechende μ_3 -Germylidin-Hetero-Cobalt-Cluster waren zugänglich. Zu ihrer Synthese liess sich der von uns an den μ_3 -Methylidin-Clustern entdeckte direkte Metallaustauch [3] auf die RGeCo₃-Verbindungen VI [9] anwenden. Gemäss Gl. 2 bildeten sich daraus mit [Cp(CO)₃Mo]₂ in guten Ausbeuten die Hetero-Cluster VII. Aussagen über den Mechanismus dieser Reaktion können noch nicht gemacht werden [3], doch dürfte die Tatsache eine Rolle spielen, dass das zweikernige Molydäncarbonyl mit seinen einkernigen Fragmenten Cp(CO)₃Mo[•] im Gleichgewicht steht [10].

Die Spektren der Hetero-Mehrkernkomplexe IV, V und VII (Tab. 1) entsprechen der Konstitution der Verbindungen. Bei den offenen Systemen IV lassen die IR-Daten die Si-gebundene Cp(CO)₃M-Gruppe [11] und die CO- und Si-verbrückte Co₂(CO)₇-Einheit [12] erkennen. Die IR-Spektren der RSiCo₂Mund RGeCo₂Mo-Cluster sind untereinander und auch denen der RCCo₂M-Cluster [2] sehr ähnlich. Wie bei den Grundkörpern I, II und VI liegen die CO-Valenzschwingen der Si- und Ge-Verbindungen bei etwas kleineren Wellenzahlen als die der C-Verbindungen. Die NMR-Resonanzen der C₅H₅-Liganden liegen im Erwartungsbereich, die CH₃-Signale finden sich dagegen bei deutlich höherem Feld als die der RCCo₂M-Cluster [2].

TABLLE 1

SPEKTREN DER KOMPLEXE IV, V UND VII

Komplex	CO-Valenzs (cm ⁻¹ , in C	chwingungen yclohexan)					NMR-Signale (Benzol, int. TMS	
							δ(CH ₃)	δ(C ₅ H ₅)
IVa	2082m	2060(Sch)	2048sst	2026sst	2010(Sch)	2008sst	1.73	4.84
	1995(Sch)	1943m	1917st	1831s	1815m			
IVЪ	2079m	2056(Sch)	2048sst	2026sst	2010(Sch)	2004sst	1.92	4.72
	1989(Sch)	1943m	1911st	1831s	1812m			
Va	2078(Sch)	2062st	2038(Sch)	2018sst	2000sst	1996sst	1.36	4.57
	1981(Sch)	1960m	1943s	1894m				
Vb	2072(Sch)	2058st	2037s	2015sst	1998sst	1992sst	1.43	4.56
	1980(Sch)	1957m	1934s	1888m				
VIIa	2080s	2058m	2033m	2018sst	2000st	1992st	1.67	4.63
	1981(Sch)	1969(Sch)	1959m	1918(Sch)	1896m			
VIIb	2082s	2059m	2036m	2019sst	2000st	1997st		4.63
	1984(Sch)	1969(Sch)	1960m	1958(Sch)	1909т			

Die relativ einfachen Synthesen machen die neuen Hetero-Cluster V und VII weiterführenden Untersuchungen zugänglich. Versuche zum weiteren Metallaustausch unter Bildung chiraler Cluster und zur katalytischen Aktivität der μ_3 -RSi- und μ_3 -RGe-verbrückten Hetero-Mehrkernkomplexe sind im Gange.

Experimentelles

Darstellung von Va und Vb: 1.10 g (3.8 mmol) in Anlehnung an Malisch et al. [11] gewonnenes $Cp(CO)_3Mo-SiH_2Me$ und 1.30 g (3.8 mmol) $Co_2(CO)_8$ wurden in 50 ml Cyclohexan 24 h bei 20°C gerührt. Der gebildete gelbe Niederschlag von IVa wurde abfiltriert, mit Hexan gewaschen, in 30 ml Benzol aufgenommen und 24 h unter Rückfluss erhitzt. Nach Entfernen des Lösungsmittels i. Vak. ergab Umkristallisation aus Hexan bei -30°C 0.28 g (14%) Va.

Vb wurde analog aus 1.66 g (4.4 mmol) $Cp(CO)_3W$ —SiH₂Me und 1.50 g (4.4 mmol) $Co_2(CO)_8$ erhalten. Ausbeute 0.34 g (12%).

Darstellung von VIIa: 240 mg (0.46 mmol) VIa [9] und 114 mg (0.23 mmol) $[Cp(CO)_3Mo]_2$ wurden in 30 ml Benzol 24 h zum Sieden erhitzt. Es wurde i. Vak. zur Trockne eingeengt, in 10 ml heissem Hexan aufgenommen und filtriert. Kristallisation bei -30°C ergab 170 mg (62%) VIIa.

VIIb entstand analog aus 220 mg (0.35 mmol) VIb und 100 mg (0.20 mmol) [Cp(CO)₃Mo]₂. Ausbeute 160 mg (65%).

Tab. 2 gibt die Charakterisierung der neuen Cluster.

TABELLE 2

EIGENSCHAFTEN UND ANALYSEN DER CLUSTER V UND VII

Komplex	Farbe	Schmp. (°C)	Formel (Molmasse)	Analysen (Gef. (ber) (%))			
				С	н	Co	
Va	schwarz	≈ 100 (Zers)	C ₁₄ H ₈ Co ₂ MoO ₈ Si	31.19	1.33	21.64	
∿ъ	schwarz	pprox 100 (Zers.)	(546.1) C ₁₄ H ₈ Co ₂ O ₈ SiW (634.0)	(30.79) 25.37 (26.52)	(1.48) 1.14 (1.27)	(21.58) 19.28 (18.59)	
VIIa	dunkelbraun	≈ 100 (Zers.)	(590,6) ^{<i>a</i>} (590,6) ^{<i>a</i>}	28.47 (28.41)	1.37 (1.14)	19.96 (19.12)	
VIIb	dunkelbraun	103105	С ₁₉ H ₁₀ Co ₂ GeMoO ₈ (652.7) ^b	34.96 (34.97)	1.54 (1.31)	18.06 (18.89)	

^aGef. 538, ^bGef. 620 (dampfdruckosmometr.).

Literatur

- 1 W.L. Gladfelter und G.L. Geoffroy, Advan. Organometal. Chem., 18 (1980) 207.
- 2 H. Beurich und H. Vahrenkamp, Angew. Chem., 90 (1978) 915; Angew. Chem. Int. Ed. Engl., 17 (1978) 863.
- 3 H. Beurich und H. Vahrenkamp, Angew. Chem., im Druck.
- 4 F. Richter, H. Beurich und H. Vahrenkamp, J. Organometal. Chem., 166 (1979) C5.
- 5 H. Vahrenkamp und E.J. Wucherer, Angew. Chem., im Druck.
- 6 H.J. Haustein und K.E. Schwarzhans, Z. Naturforsch. B., 31 (1976) 1719.
- 7 P. Gusbeth und H. Vahrenkamp, unveröffentlicht.
- 8 E. Röttinger und H. Vahrenkamp, J. Organometal. Chem., im Druck.
- 9 G. Etzrodt und G. Schmid, J. Organometal. Chem., 169 (1979) 259.
- 10 T. Madach und H. Vahrenkamp, Chem. Ber., 113 (1980) 2675.
- 11 W. Malisch und M. Kuhn, Chem. Ber., 107 (1974) 979.
- 12 vgl. R.C. Job und M.D. Curtis, Inorg. Chem., 12 (1973) 2514.